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LETI'ER TO THE EDITOR 

Probability of survival for vicious walkers near a cliff 

P J Forrester 
Department of Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia 

Received 12 April 1989 

Abstract. The partition function for a model system of N vicious walkers is expressed as 
a determinant when the walkers are confined to a half-line or a finite interval. For the 
walkers on the half-line, the probability of survival, the probability of a reunion and the 
conditional probability of a reunion are obtained. The two-point correlation near and 
parallel to a boundary of fixed like spins in the magnetised phase of the two-dimensional 
Ising model is conjectured to be proportional to the probability of a reunion near the 
boundary for N = 2  and thus decay as e-''t/r5 for large distances r. 

The lock step model of vicious walkers on a one-dimensional lattice allows each walker 
at the tick of a clock to move either one lattice site to the left or one lattice site to the 
right. The only restriction is that no two walkers may arrive at the same lattice site or 
pass one another. It was shown by Fisher (1984) that the partition function for this 
model in free boundary conditions can be expressed as a determinant. This result was 
used by Fisher (1984) to provide physically instructive heuristic arguments predicting 
quantitative features of the critical properties of wetting in two dimensions and related 
phenomena. 

Subsequently, it was proved by this author (Forrester 1989) that the partition 
function with the vicious walkers in periodic boundary conditions could also be 
expressed as a determinant (provided that N, the number of walkers, is odd). This 
result allows simple formulae for the partition function and correlation functions of 
a model of the incommensurate-commensurate phase transition to be provided in a 
finite system. The primary purpose of this letter is to prove that the partition function 
for a further two different types of boundary conditions can again be expressed as 
determinants. These further boundary conditions are: 

(i) a hardwall boundary condition on one end (which can be thought of as a cliff 
over which the walkers can fall to their death) and a free boundary condition on the 
other; 

(ii) two hardwall boundary conditions. 
In situation (i)  the system is a semi-infinite one-dimensional regular lattice (with 

lattice sites at. the positive integers, say), while in (ii) it is a finite lattice (with lattice 
sites at the integers from 1 to M, say). Initially the walkers are at the lattice sites 

1; c 1;< .  . .< r;, (1) 

which are required to be of the same parity (i.e. all even or all odd). After n time 
intervals the walkers are to arrive at the lattice sites 

I ,  c 1, c . . . c I N .  
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The walkers are subject to the constraints that they must move either to the left or to 
the right at each tick of the clock without arriving at the same lattice site as any other 
walker. (Having required that the initial sites (1) all have the same parity, this implies 
that paths cannot cross.) Furthermore, each walker must remain within the domain 
specified by (i) and (ii) above. 

The partition function for these models can be written 

Here C denotes the set of all allowed paths from I,! to I ,  for each j = 1,. . . , N and BC 
denotes the particular boundary condition: wall-free (WF) or wall-wall (WW). Also 

I r  
w " ( z , ! ~ l j ) = W - l f J J i  

where I is the number of steps to the left and r the number of steps to the right in the 
j th  path. 

The following result extends Fisher's master formula (Fisher 1984, equation (5.1)). 

M 

[ ) I  - e-2,ri(l,'+lk)a/2.Vf 

a = l  

In (5) and (6) 

+(e)  = U - '  e-"+w, e". (7)  

Remark. BCQn( I: I lk) is the partition function for a single walker going from / j  to /k in 
n steps with the specified boundary condition. 

Prooj The key to the proof is to note that the partition function in each case is uniquely 
defined as the solution of a multivariable difference equation. If the notation 

(8) BcZ(I;, . . . , I& I / I , .  . . , IN ; n )  := B C F ( I I ;  n)B,F(I*; n) . . . B c F ( I N  ; n) 

is introduced, then by considering the possible ways of constructing the partition 
function with n steps from that with n - 1 steps, we see 

The right-hand side of (9) only has meaning when the product is expanded and the 
definition (8) used. 
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The difference equation (9) is to be solved subject to the initial condition 

the non-intersecting condition 

B C Z ( l ; ,  , l / N I I I , .  . . , 4,. e ,  l k ,  e . .  , ZN; n ) = o  i f l ,= lk  (11) 

WFZ(l;, . . . , l)NIIl, . , IN; n)=O if / k = o ,  k =  1 , .  . . , N (12) 

wwZ(Ii,. .., l & I I I , . .  ., I,; n )=O i f l k = O o r M , k = l  ,..., N. (13) 

and the boundary conditions 

The equations (9)-(13) uniquely determine wFZ and -2. 
The reader is referred to Forrester (1989) for the (straightforward) details of proving 

that (4) satisfies (9). The initial condition (10) follows from the initial condition for 
the single walker partition function 

BCQO(lJ( 1,) = a,;,lk (14) 

W F Qn ( l; I 0) = WW Qn ( 1; I 0) = WW Qn ( 1 &f = 0. 

and the boundary conditions (12) and (13) follow similarly from 

(15) 

The non-intersecting condition ( 1  1 )  is a consequence of the fact that a determinant 
U vanishes whenever two rows are equal. The theorem is thus established. 

As detailed in Forrester (19891, the continuum limit can be taken to obtain a model 
of vicious Brownian walkers in the particular boundary conditions. We find 

WFQn ( I Ik ) WFQl (XI I xk 

1 e --Of (e( -x ; -xk  )2/2D1 -(x;+x, ) 2 / 2 D ~  -e  .- .- 
( 2 ~ D r )  

- @3(p(xj+xk)/2L; e-rr2D'IZL2 11 (17) 
where D denotes the diffusion constant, f the time and (in (17)) L the length of the 
system. These formulae, together with (4)-(6), finalise our extensions of Fisher's (1984) 
master equation. 

Let us now explore some of the consequences of (4) and further consider the case 
BC = WF in the continuum limit. With 

xf = aj (18) 
so that the walkers are initially equally spaced, from (4) and (16) we see 

wFZ(a, 2a , .  . . , Nu I I , ,  . . . , I N  ; n) =(--&) 2 N / 2  exp{ -L( f ( ~ ~ ) ' + ( a j ) ~ ) - u N t ]  

2dt j - 1  

x de t [ s inh ja~~ /Dt ]~ ,h  = 1 , .  . . , N. 
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The large Dt expansion of the determinant can be obtained as follows. In the j th  row 
replace sinh jark/ Dt by its Taylor polynomial approximation 

Subtracting a suitable factor of the first row from each of the other rows gives for each 
row j 3 2 the entries 

Now subtracting the new row 2 from each of the rows j = 3, . . . , N gives these latter 
rows the entries 

Continuing in this fashion we see that for large Dt 

det[sinhjaxk/Dflj,k=,. ..., N 

where 

and use has been made of the van der Monde determinant expansion. 
The results (19) and (23) allow the large Dt behaviour of the probability of a 

reunion to be calculated. A reunion is the term used for the event in which the spacing 
of the walkers in their final configuration is the same as in their initial configuration. 
Thus 

Xk = p -k ka k = l , 2 ,  . . . ,  N (25) 
where p a  0 specifies the displacement of the final configuration from the wall. Denot- 
ing the probability by r $ N ) ( p ) ,  we see from (19) and (23) that the leading-order behaviour 
for large Dt and large p is 

N 2 + N / 2  

(26) 
e - N+ '/2 Dt N (  N +  1 ) /2  

r:N)(p) - BN &) P 

The constant BN can be specified if required. The exponent N 2 +  N / 2  with N = 2 
agrees with a result of Fisher (1984, equation (5.10)). 

As an application of this result, consider the two-dimensional Ising model in a 
half-plane with the boundary spins all fixed in the one direction. Extending the 
arguments of Fisher (1984, § 1 1 )  the two-point correlation parallel to the boundary in 
the magnetised phase, C ( r )  say, should be proportional to r :* ' (p)  (with t = r). Thus 
from (26) 

C ( r )  = A (  T, d )  e-r'S(T,dt/r5 (27) 
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where T is the reduced temperature and d is the number of rows from the boundary, 
A is the amplitude and 5 the correlation length. The exponent 5 is to be contrasted 
to the corresponding exponent 2 in the bulk (see e.g. Fisher 1984, equation (11.3)). 

By integrating (26) over j~ from 0 to 03 the large Dt behaviour of the probability 
RIN’ of a reunion anywhere is specified. Thus 

The probability of survival irrespective of the particular final configuration PIN)  is 
calculated for large Dr from (19) and (23) by integrating over the region 

o ~ x 1 s x 2 s . . . s x N < ~ .  (29) 
However, the integrand is positive in this region and its absolute value is symmetric 
in each x k .  Thus, replacing the integrand by its absolute value, the region of integration 
(29) can be replaced by integrating each x k  over the half-line 0 S x k  < 03 provided we 
divide by N!. Changing variables 

xj = m xj (30) 

then gives 

where the constant DN can easily be specified if required. The conditional probability 
of survival 

for large Df, from (28) and (31) therefore behaves as 
N 2 + N - 2 ) / 4  

S Y ’  - EN (k) (33) 

The exponent ( N 2  + N - 2)/4 is precisely that calculated by Fisher (1984, equation 
(4.5)) for SiN’  in free boundary conditions. The wall therefore has no effect on the 
leading behaviour of this quantity. However, the exponents in (26 ) ,  (28) and (31) are 
different from the corresponding exponents found by Fisher (1984) in free boundary 
conditions. 
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